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Linear magnetohydrodynamic Taylor-Couette instability for liquid sodium

Günther Rüdiger,* Manfred Schultz, and Dima Shalybkov†

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
~Received 29 November 2002; published 29 April 2003!

The linear stability of MHD Taylor-Couette flow of infinite vertical extension is considered for liquid
sodium with its small magnetic Prandtl number Pm of order 1025. The calculations are performed for a
container withRout52Rin , with an axial uniform magnetic field and with boundary conditions for both vacuum
and perfect conductions. For resting outer cylinder subcritical excitation in comparison to the hydrodynamical
case occurs for large Pm but it disappears for small Pm. For rotating outer cylinder the Rayleigh line plays an
exceptional role. The hydromagnetic instability exists with Reynolds numbers exactly scaling with Pm21/2 so
that the moderate values of order 104 ~for Pm51025) result. For the smallest step beyond the Rayleigh line,
however, the Reynolds numbers scale as 1/Pm leading to much higher values of order 106. Then it is the
magneticReynolds number Rm that directs the excitation of the instability. It results as lower for insulating
than for conducting walls. The magnetic Reynolds number has to exceed here values of order 10 leading to
frequencies of about 20 Hz for the rotation of the inner cylinder if containers with~say! 10 cm radius are
considered. With vacuum boundary conditions the excitation of nonaxisymmetric modes is always more dif-
ficult than the excitation of axisymmetric modes. For conducting walls, however, crossovers of the lines of
marginal stability exist for both resting and rotating outer cylinders, and this might be essential for future
dynamo experiments. In this case the instability also can onset as an overstability.

DOI: 10.1103/PhysRevE.67.046312 PACS number~s!: 47.20.Ft
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I. INTRODUCTION

The longstanding problem of the generation of turbulen
in various hydrodynamically stable situations has found
solution in recent years with the MHD~magnetohydrody-
namics! shear flow instability, also called magnetorotation
instability ~MRI!, in which the presence of a magnetic fie
has a destabilizing effect on a differentially rotating flo
with the angular velocity decreasing outwards. The MRI h
been formulated decades ago for the ideal Taylor-Cou
flow @1,2#, but its importance as the source of turbulence
accretion discs with differential~Keplerian! rotation was first
recognized by Balbus and Hawley@3#.

However, the MRI has never been observed in the la
ratory, see Refs.@5–8#. After Goodman and Ji Ref.@9# the
absence of MRI is due to the small magnetic Prandtl num
approximation used in Ref.@2#. The magnetic Prandtl num
ber Pm is very small under laboratory conditions indee
(;1025 and smaller, see Table I!.

A proper understanding of this phenomenon is very i
portant for possible future experiments including the Tayl
Couette flow dynamo experiments. The simple model
uniform-density fluid contained between two vertically in
nite rotating cylinders is used with constant magnetic fi
parallel to the rotation axis. For viscous flows the most g
eral form of the rotation lawV(R) in the fluid is

V~R!5a1
b

R2 , ~1!

*Electronic address: gruediger@aip.de
†Permanent address: A.F. Ioffe Institute for Physics and Tech
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wherea and b are two constants related to the angular v
locities V in and Vout with which the inner and the oute
cylinders are rotating, andR is the distance from the rotatio
axis. If Rin and Rout (Rout.Rin) are the radii of the two
cylinders then

a5
m̂2ĥ2

12ĥ2
V in and b5Rin

2 12m̂

12ĥ2
V in ~2!

with the geometry ratios~Fig. 1!

m̂5
Vout

V in
and ĥ5

Rin

Rout
. ~3!

Following the Rayleigh stability criterion,

d~R2V!2

dR
.0, ~4!

rotation laws are hydrodynamically stable fora.0, i.e., m̂

.ĥ2. They should, in particular, be stable for resting inn
cylinder, i.e.,m̂→`. Richard and Zahn@10# focused atten-
tion on the experimental results of Wendt@11# who found
nonlinear instability for this case for Reynolds numbers
order 105 ~see Ref.@12#!. The finite-amplitude instability of

l-

TABLE I. Parameters of the fluids suitable for MHD exper
ments, taken from Refs.@2# and @4#.

r (g/cm3) n (cm2/s) h (cm2/s) Pm

Sodium 0.92 7.131023 810 0.8831025

Gallium 6.0 3.231023 2060 1.531026

Mercury 5.4 1.131023 7600 1.431027
©2003 The American Physical Society12-1
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hydrodynamically stable rotation laws must therefore rem
in the astrophysical discussion. However, later experime
by Schultz-Grunow@13# with very similar Taylor-Couette
flows for resting inner cylinder demonstrated the results
Wendt as due to rather imperfect container constructions
the flow remained laminar even for Reynolds numbers of
same order.

One of the targets in the present paper is the axisymm
of the excited modes. We have shown in Ref.@14# that for
containers with conducting boundaries it happens for su
ciently strong magnetic fields that the mode with the low
eigenvalue~i.e., the lowest Reynolds number! is a nonaxi-
symmetric mode. As an impressive example, in Fig. 2
Pm50.01 the crossover of the instability lines for axisym

FIG. 1. Cylinder geometry of the Taylor-Couette flow with axi
magnetic field.

FIG. 2. Instability lines for axisymmetric~solid! and nonaxi-
symmetric modes (m51, dashed line! for conducting walls and

Pm50.01 (ĥ50.5).
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metric and nonaxisymmetric modes is shown for Hartma
numbers of about 400@15,16#.

Despite of its general meaning this behavior is on
known so far for conducting walls and for magnetic Pran
numbers not smaller than 1022. For possible laboratory ex
periments we have to extend, however, the computation
insulating boundaries~vacuum! and to much smaller mag
netic Prandtl numbers Pm.

The equations, therefore, are solved here mainly for
small magnetic Prandtl number Pm51025 very close to the
value for liquid sodium~see Table I!. The aspect ratio of the
container walls radii in the present paper is almost alw
fixed to ĥ50.5.

II. BASIC EQUATIONS

The MHD equations that have to be solved are

]u

]t
1~u•“ !u52

1

r
“p1nDu1J3B ~5!

and

]B

]t
5curl~u3B!1hDB, ~6!

with the electric current

J5curlB/m0 ~7!

and divu5div B50. They are considered in cylindrical ge
ometry with R, f, and z as the coordinates. A viscou
electric-conducting incompressible fluid between two rot

FIG. 3. Marginal stability lines for axisymmetric modes wit

resting outer cylinder from conducting material forĥ50.5. The
shaded area denotes subcritical excitations of unstable axisym
ric modes by the external magnetic field.
2-2
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ing infinite cylinders in the presence of a uniform magne
field parallel to the rotation axis leads to the basic solut
UR5Uz5BR5Bf50, Bz5B05const, andUf5aR1b/R,
with U as the flow andB as the magnetic field. We ar
interested in the stability of this solution. The perturbed st
of the flow may be described byuR8 , uf8 , uz8 , BR8 , Bf8 , Bz8 ,
p8 with p8 as the pressure perturbation.

Here only the linear stability problem is considered. B
analyzing the disturbances into normal modes the solut
of the linearized hydromagnetic equations are of the form

B85B~R!ei (mf1kz2vt),

u85u~R!ei (mf1kz2vt). ~8!

From hereon all dashes have been omitted from the notat
of fluctuating quantities. Only marginal stability will be con
sidered hence the imaginary part ofv, i.e.,I(v), always
vanishes. We use
r H
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H5A~Rout2Rin!Rin ~9!

as the unit of length, theh/H as the unit of velocity, andB0

as the unit of the magnetic field, and work with the magne
Prandtl number

Pm5
n

h
, ~10!

with n as the kinematic viscosity andh as the magnetic
diffusivity. Note H21 also as the unit of wave numbers an
n/H2 as the unit of frequencies. After elimination of bo
pressure fluctuations and the fluctuations of the vertical m
netic fieldBz the linearized equations are
]uR

]R
1

uR

R
1

im

R
uf1 ikuz50, ~11!

]2uf

]R2 1
1

R

]uf

]R
2

uf

R2 2S m2

R2 1k2Duf2 i S mRe
V

V in
2v Duf1

2im

R2
uR2Re

1

R

]

]RS R2
V

V in
DuR

2
m

k F 1

R

]2uz

]R2 1
1

R2

]uz

]R
2S m2

R2 1k2D uz

R
2 i S mRe

V

V in
2v D uz

RG1
m

k
Ha2F 1

R

]BR

]R
1

BR

R2G1
i

k
Ha2S m2

R2 1k2DBf50, ~12!

]3uz

]R3 1
1

R

]2uz

]R2 2
1

R2

]uz

]R
2S m2

R2 1k2D ]uz

]R
1

2m2

R3 uz2 i S mRe
V

V in
2v D ]uz

]R
2 imRe

]

]RS V

V in
Duz

2Ha2F ]2BR

]R2 1
1

R

]BR

]R
2

BR

R2 2k2BR1
im

R

]Bf

]R
2

im

R2
BfG2 ikF]2uR

]R2 1
1

R

]uR

]R
2

uR

R2 2S k21
m2

R2 DuRG2kS mRe
V

V in
2v DuR

22
km

R2 uf22ikRe
V

V in
uf50, ~13!

]2BR

]R2 1
1

R

]BR

]R
2

BR

R2 2S m2

R21k2DBR2
2im

R2
Bf2 iPmS mRe

V

V in
2v DBR1 ikuR50, ~14!

]2Bf

]R2 1
1

R

]Bf

]R
2

Bf

R22S m2

R2 1k2DBf1
2im

R2
BR2 iPmS mRe

V

V in
2v DBf1 ikuf1PmReR

]V/V in

]R
BR50. ~15!
ndtl
al

lso
Here the Reynolds number Re and the Hartmann numbe
are defined as

Re5
~Rout2Rin!RinV in

n
~16!

and
a
Ha5B0A~Rout2Rin!Rin

m0rnh
. ~17!

For the given Hartmann number and the magnetic Pra
number we shall compute with a linear theory of the critic
Reynolds number of the rotation of the inner cylinder, a
for various mode numbersm.
2-3
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III. BOUNDARY CONDITIONS, NUMERICS

An appropriate set of ten boundary conditions is nee
to solve systems~11!–~15!. Always no-slip conditions for the
velocity on the walls are used, i.e.,

uR5uf5
duR

dR
50. ~18!

The boundary conditions for the magnetic field depend
the electrical properties of the walls. The tangential curre
and the radial component of the magnetic field vanish
conducting walls hence

dBf

dR
1

Bf

R
5BR50. ~19!

These boundary conditions hold for bothR5Rin and R
5Rout.

The homogeneous set of equations~11!–~15! together
with the boundary conditions determine the eigenvalue pr
lem of the form

L„k,m,Re,Ha,R~v!…50 ~20!

for given Pm. The real part ofv, i.e.,R(v), describes a drift
of the pattern along the azimuth which only exists for no
axisymmetric flows. For axisymmetric flows (m50) the real
part of v, i.e., R(v), is zero for stationary patterns of flow
and field and it is nonzero for oscillating solutions, which a
called overstability.L is a complex quantity, both its real pa
and its imaginary part must vanish for the critical Reyno
number. The latter is minimized by the choice of the wa
number k. For a fixed Hartmann number, a fixed Pran
number and a given vertical wave numberk, we find the
eigenvalues of the equation system. They are always m
mal for a certain wave number which by itself defines t
marginally unstable mode. The corresponding eigenvalu
the desired Reynolds number.R(v) is the second quantity
which is fixed by eigenequation~20!.

The system is approximated by finite differences w
typically 200 radial grid points. The resulting determinantL
takes the value zero if and only if the values Re andR(v)
are the eigenvalues. We can also stress that the result
numerically robust as an increase of the number of g
points does not change the results.

The situation changes for insulating walls. The magne
field must match the external magnetic field for vacuum. I
known for this case that the boundary conditions for axisy
metric solutions strongly differ from those for nonaxisym
metric solutions~see Ref.@17#!. The condition curlRB50 in
vacuum immediately provides

Bf5
m

kR
Bz ~21!

at R5Rin and R5Rout. From the solution of the potentia
equationDc50 one finds
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iBz

I m~kR! S m

kR
I m~kR!1I m11~kR! D50 ~22!

for R5Rin and

BR1
iBz

Km~kR! S m

kR
Km~kR!2Km11~kR! D50 ~23!

for R5Rout. I m and Km are the modified Bessel function
~with different behavior atR→0 andR→`). One can elimi-
nate with divB50 the vertical componentBz of the magnetic
field in boundary conditions~21!–~23!.

IV. RESULTS

The following results concern different aspects of t
MHD Taylor-Couette problem for small magnetic Prand
number Pm. In Sec. A the realization of the casea,0 ~here
with resting outer cylinder, i.e.,m̂50) is considered. There
is an instability even without magnetic fields so that the
stability lines start at they-axis. In Sec. B the special cas
a50 is considered with surprising results. Section C p
sents the results for the two experiments withm̂50 andm̂
50.33 with respect to the azimuthal symmetry of the eige
modes. In Sec. D the existence of oscillating modes is
cussed, i.e., the existence of overstability for small magn
Prandtl numbers.

A. Subcritical excitation for large Pm „aË0…

Figure 3 shows the stability lines for axisymmetric mod
for containers with conducting walls and with resting ou
cylinder for fluids of the various magnetic Prandtl numbe
In Fig. 4 the same is shown for containers with insulati
walls ~‘‘vacuum’’ !. Only the vicinity of the classical hydro

FIG. 4. The same as in Fig. 3 but for cylinder walls of insulati
material.
2-4
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dynamic solution with Re568.2 is shown. There is a stron
difference of the geometry of the bifurcation lines for P
*1 and Pm,1. In the latter case, i.e., for fluids with low
electrical conductivity the magnetic field only suppresses
instability so that all the critical Reynolds numbers exce
the value 68, and this the more the stronger the magn
field is.

For small magnetic Prandtl number the stability lin
hardly differ, which is the situation already considered with
the small-gap approximation by Chandrasekhar@2# and
Kurzweg @18,19# without any indication of magnetorota
tional instability.

The opposite is true for Pm*1. Note that in Figs. 3 and 4
for fluids with high electrical conductivity the resulting crit
cal Reynolds numbers are smaller than Re568. Magnetic
fields with small Hartmann number support instability p
terns rather than to suppress them. This effect becomes m
effective for increasing Pm, but it vanishes for stronger m
netic fields@20,21#. Obviously, the MRI only exists for weak
magnetic fields and high enough electrical conductiv
and/or molecular viscosity~when the fields can be consid
ered as frozen in and/or enough viscosity prevents the ac
of the Taylor-Proudman theorem!. Even within the small-gap
approximation, such a subcritical excitation exists for ve
high viscosity, i.e., for Pm@1 @18#, but it did not appear for
Pm,1.

Note that the subcritical excitation of Taylor vortices on
works for weak magnetic fields. The upper limits of the po
sible Hartmann numbers can be observed for the magn
Prandtl numbers 1 and 10 in Figs. 3 and 4. After our co
putations, the subcritical excitation of Taylor vortices f
weak magnetic fields requires rather high magnetic Pra
numbers. The microscopic values for Pm are orders of m
nitude smaller than unity~see Table I!, so that there should
be no chance to realize the subcritical excitation of Tay
vortices by experiments. However, the speculation may
allowed whether really the microscopic Pm is the basic
put. The scenario is also interesting whether possible fin
amplitude hydrodynamic instabilities provide some kind
background turbulence which can be considered as mod
ing the value of the magnetic Prandtl number@4#. The turbu-
lence influences both the viscosity values and the magn
diffusivity values so that

Pm→Pmeff5
n1nT

h1hT
.

nT

hT
, ~24!

with nT andhT as the eddy viscosity and the eddy diffusivit
respectively. Because of the existence of the pressure ter
the momentum equation, both quantities are not identi
We do not have precise knowledge about the effective tur
lent magnetic Prandtl number, but it has been demonstr
that values of order 0.1 or somewhat larger should not
unlikely @22,23#. Insofar, if such speculations are not too f
from the reality, it is not completely clear that the subcritic
excitation of Taylor vortices which we have presented
Figs. 3 and 4 is unobservable in general.
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B. The Rayleigh lineaÄ0 „µ̂Äĥ2
…

There is a universal scaling on Pm for the special c
with a50 in the basic flow profile~1!, i.e. for m̂5ĥ2. Then
the term with](R2V)/]R in Eq. ~12! vanishes and form
5v50 one finds that the quantitiesuR , uz , BR , andBz are
scaling as Pm21/2 while uf ,Bf ,k, and Ha scale as Pm0.
Then also the Reynolds number for the axisymmetric mo
scales as

Re}Pm21/2. ~25!

The scaling does not depend on the boundary condition
these form50 also comply with the relations.

Result ~25! has numerically been found by Willis an
Barenghi for vacuum boundary condition@20#. However, Ru¨-
diger and Shalybkov@21# for a.0 (m̂.ĥ2) found the much
steeper scaling

Re}Pm21, ~26!

resulting in the surprisingly simple relation

Rm}const ~27!

for the magnetic Reynolds number

Rm5
~Rout2Rin!RinV in

h
~28!

and

Ha}Pm21/2 ~29!

resulting in

Ha* }const ~30!

for the Lundquist number

Ha* 5B0A~Rout2Rin!Rin

m0rh2
~31!

@21#. In case of small magnetic Prandtl number the ex
value of the microscopic viscosity is totally unimportant f
the excitation of the instability. In consequence, however,
corresponding Reynolds numbers for the MRI seem to di
by 2 orders of magnitude, i.e., 104 and 106. Insofar, experi-
ments withm̂5ĥ2 seem to look much more promising tha
experiments withm̂.ĥ2.

This challenging possibility, however, does not exist. T
critical Reynolds number form̂5ĥ2 and Pm51 as a func-
tion of ĥ is given in Fig. 5. The total minimum of the Rey
nolds number is 54.4 forĥ50.27 so that after Eq.~25! one
expects the value 1.73104 for the Reynolds number fo
Pm51025. Figure 6 shows the behavior of this result in th
vicinity of m̂5ĥ2. There is a vertical jump from 104 to 106

in an extremely small interval of the abscissa. This sh
transition does not exist for Pm51, it is only due to the very
small value of Pm. For this case in Fig. 5 the coexistence
2-5
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both hydrodynamic and hydromagnetic instabilities is a
presented. The jump profile for Pm51025 in Fig. 5 ~right!
makes it clear that such experiments withm̂5ĥ2 are not
possible. Even the smallest excess from the conditionm̂

5ĥ2 drastically changes the excitation condition. Form̂

smaller thanĥ2 ~negative excess! the hydrodynamic instabil-
ity sets in and form̂ slightly exceedingĥ2 ~positive excess!
the Reynolds number suddenly jumps by two orders of m
nitude.

C. Excitation of nonaxisymmetric modes

Let us now concentrate on the small magnetic Pran
number for liquid sodium, i.e., Pm51025. We start with the
results for containers with insulating walls and outer cyl
ders at rest@Fig. 7~a!#. There are then linear instabilities eve
without magnetic fields. For Ha50 solutions form50 (Re
568) andm51 (Re575) are known, see Ref.@14#. The
axisymmetric mode possesses the lowest eigenvalue. Th
also true within the MHD regime; we do not find any cros
over of the instability lines for axisymmetric and nonaxisym
metric modes. The same is true for containers with rotat
outer cylinder@Fig. 7~b!#. For growingm̂ the Reynolds num-
ber for the hydrodynamic solution moves upwards, reach
infinity for m̂5ĥ250.25 ~here!. The MRI is represented by
characteristic minima, in our case form̂50.33 at Hartmann
numbers of order 103 and Reynolds numbers of order of 106.
The exact coordinates of the minima are given in Table I

The results for containers withconducting wallsare given
in Fig. 8. Note that the minimal Reynolds numbers given
Fig. 8~b! are higher than for insulating cylinder walls. Th

FIG. 5. Critical Reynolds number versusĥ for m̂5ĥ2 and Pm
51.

TABLE II. Coordinates of the absolute minima in Figs. 7 and

for rotating outer cylinder (ĥ50.5,m̂50.33)

Conducting walls Insulating walls

Reynolds number 2.133106 1.423106

Mag. Reynolds number 21 14
Hartmann number 1100 1400
Lundquist number 3.47 4.42
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influence of the boundary conditions is not as small as
pected. The main difference between the two sorts of bou
ary conditions, however, is the existence of crossovers of
instability lines form50 andm51 in case of conducting
walls. For both resting and rotating outer cylinders, the cr
cal Hartmann numbers exist above which the nonaxisymm
ric mode possesses a lower Reynolds number than the
symmetric mode. We have already shown in Ref.@14# the
existence of such crossovers for conducting walls for
<Pm<0.01. It is now clear that the occurrence of nona
symmetric solutions as the preferred modes is a rather g
eral phenomenon for containers with conducting walls wh
can become important for the design of future dynamo
periments~Cowling theorem!.

FIG. 6. Critical Reynolds numbers for the Taylor-Couette flo

versusm̂ for ĥ50.27 and Pm51 ~left! and Pm51025 ~right!. The
curve for the hydrodynamic instability (Ha50) is dashed and the
hydromagnetic curve (Ha.0) is solid. The dotted line denotes th

location of the Reynolds line (m̂5ĥ2).

FIG. 7. Insulating walls~vacuum!. Stability lines for axisym-
metric (m50, solid lines! and nonaxisymmetric instability mode
with m51 ~dashed!. Left, resting outer cylinder, right, rotating

outer cylinder withm̂50.33.
2-6
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In order to characterize the Hartmann numbers note
for liquid sodium,

B52.2
Ha

Rout/10 cm
G. ~32!

Hence, forRout.22 cm the magnetic field and the Hartma
number have the same numerical values. Withn51022

cm2/s andĥ50.5 it follows from Eqs.~16! and ~17!,

f in564
Re/106

~Rout/10 cm!2
Hz ~33!

for the frequency of the inner cylinder. Hence, a containe
insulating walls with an outer radius of 22 cm~and an inner
radius of 11 cm! filled with liquid sodium and embedded i
vacuum requires arotation of about19 Hz in order to find
the MRI. Following Eq.~32! the required magnetic field i
about 1400 G.

D. Excitation of oscillating modes

There are not only stationary patterns of flow and fie
possible but the instability can also onset in the form
oscillating solutions which effect is called overstability.
case of rotating convection between two layers heated f
below the onset of the instability in the form of oscillatin
solutions even possesses the lowest eigenvalues for ce
Prandtl numbers@2#. We find a very similar behavior for the
MHD Taylor-Couette flow between conducting cylinders f
resting outer cylinder~see Fig. 9!. It is a pair of waves trav-
eling in positive and negativez direction. Note that the cyl-
inder considered here has no bound in vertical direction
the cylinder is finite, however, the possibility exists that t
traveling waves might be combined to standing waves.

V. CONCLUSIONS

The linear stability of an MHD Taylor-Couette flow o
infinite vertical extension is considered for liquid sodiu
with its small magnetic Prandtl number Pm of order 1025.

FIG. 8. The same as in Fig. 7 but for perfectly conducting wa
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The calculations are performed for a container withĥ50.5
and with an axial uniform magnetic field excluding counte
rotating cylinders. The sign of the constanta in basic rotation
law ~1! strongly influences the results. It is negative for re
ing outer cylinder. The main point here is that the subcriti
excitation that occurs for large Pm disappears for small
~cf. Figs. 3 and 4!. The same is true for model computation
within the small-gap approximation. Kurzweg@18# extended
within the small-gap approximation the small-Pm compu
tions of Chandrasekhar to larger Pm, and indeed the subc
cal excitation for weak magnetic fields appeared—but t
effect seemed to be overlooked as an outstanding phen
enon over decades.

For rotating outer cylinder the Rayleigh line~i.e., a50 or
m̂5ĥ2) plays an exceptional role. The hydrodynamic ins
bility starts to disappear (Re→`), while the hydromagnetic
instability exists with minimal Reynolds numbers at certa
Hartmann numbers of the magnetic field. As one can sh
these Reynolds numbers exactly scale with Pm21/2 resulting
in moderate values of order 104 for Pm51025. However,
already for the smallest positive value ofa the Reynolds
numbers start to scale as 1/Pm leading to much higher va
of order 106 for Pm51025. The surprising result is that fo
outer cylinders rotating faster than the limita50, it is ex-
clusively themagneticReynolds number Rm that directs th
excitation of the instability.

The magnetic Reynolds numbers are resulting as lo
for insulating walls~‘‘vacuum’’ ! than for conducting walls of
the container. Generally, the magnetic Reynolds numbers
liquid sodium have to exceed critical values of order 10~see
Table II! leading to frequencies of about 20 Hz for the rot
tion of the inner cylinder if containers with~say! 10 cm inner
radius are considered. Then the critical linear flow speed
the inner cylinder is about 12 m/s which is remarkably clo
to the flow speeds of the current dynamo experiments w
helicity. The required magnetic fields are about 1000 G.

.

FIG. 9. The same as in Fig. 8~a! but with the inclusion of oscil-
lating axisymmetric modes~overstability! appearing here for lower
Reynolds numbers.
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Also nonaxisymmetric modes have been considered. W
vacuum boundary conditions their excitation is always m
difficult than the excitation of axisymmetric modes; w
never observed a crossover of the lines of marginal stab
For conducting walls, however, such crossovers exist
both resting and rotating outer cylinders, and this might
essential for future dynamo experiments. In this case, h
ever, the instability also can onset in the form ofoscillating
y

. A

-

04631
th
e

y.
r
e
-

axisymmetric patterns of flow and field, and the Reyno
numbers of these solutions are lower than the Reynolds n
bers for the stationary solutions.
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